Clinical Studies between OsteoMesh and Titanium Mesh

Lim TC¹, Teoh SH², Hutmacher DW³, Schantz JT⁴

¹Division of Plastic, Reconstructive & Aesthetic Surgery, National University of Singapore and National University Hospital Systems, Singapore
²Centre for Biomedical Materials Applications and Technology (BIOMAT) Department of Mechanical Engineering, National University of Singapore, Singapore
³Division of Regenerative Medicine, Queensland University of Technology, Australia
⁴Department of Surgery, Yong Loo Lin School of Medicine National University of Singapore and National University Hospital Systems, Singapore

Abstract
In this paper, we seek to compare the efficacy of polycaprolactone with titanium mesh in reconstruction of orbital fractures. In a prospective randomized controlled trial conducted between August 2004 and July 2006, 80 patients with orbital fractures were recruited into the study. These patients were randomized to receive either titanium or polycaprolactone. Following a comprehensive preoperative and postoperative protocol, these patients were followed up by both the plastic surgeon and the ophthalmologist up to a year. Out of 80 patients, 63 completed the study and 19 were excluded for various reasons. Of the remaining 44 patients, there were 49 reconstructions. (polycaprolactone: n=29, titanium:n=22) When evaluated at 1, 3, 6 and 12 months, there was no statistically significant difference between the two groups in terms of diplopia, enopthalmos and limitations in gaze. In both groups, all patients achieved functionally and aesthetically good outcomes. Polycaprolactone is comparable to titanium long considered the gold standard for repair of orbital fractures and holds immense potential in view of its bioresorbable properties.

Introduction
Isolated or combined fractures of the orbit are frequently seen in our hospitals and are often co-managed by both the Departments of Plastic Surgery and Ophthalmology. Clinically, fractures may present with marked chemosis, periorbital hematomas, hypoesthesia of the infraorbital nerve and traumatic optic neuropathy. Long term sequelae include diplopia, limitations in gaze, hypoglobus and enophthalmos. An ideal implant material for orbital reconstructions should be inert, resistant to infections, provide rigid stability and free of any potential complications eg migration or extrusion of the implant. Titanium meshes have long been considered the gold standard for repair of orbital defects. The ease of use, the ability of titanium mesh to conform to the contours of the orbit and its strength makes it an ideal material for reconstructing these defects. Over the past 20 years, alloplastic biodegradable materials have emerged as alternatives, gaining popularity due to its lack of soft tissue immune response, adequate structural support and osteoconductive nature. More recently, polycaprolactone, an FDA approved polymer was proposed as an implant material for orbital defects based on its above properties. In view of the above-mentioned, a clinical trial is initiated to investigate the effectiveness of polycaprolactone mesh compared to titanium mesh in reconstruction of the orbit.

Materials and Methods
The Osteopore PCL (Polycaprolactone) Scaffold™ of OsteoMesh™ acts as a bone void filler. The shape of the OsteoMesh™ (Figure 1) conforms to the defect, thus maximizing direct contact with viable host bone. It is intended for the use in the repair of neurosurgical burr holes, craniotomy cuts and other cranial defects. It is also for use in the augmentation or restoration of bony contour in the craniofacial skeleton.

Patients with orbital floor fractures who expressed consent to be entered into the study, were randomized into either the titanium mesh or PCL implant group – estimated 40 per year for 2 years. Diagnosis was made clinically and with CT scans. A brief synopsis of the clinical investigative plan is as follows:
Initial assessment of the eye – diplopia, visual acuity & range of movement of the affected eyeball, were performed.

1. Surgery was performed in the operating theatre. Under general anesthesia, a lateral canthotomy incision and a transconjunctival approach (Figure 2) was made for all cases. Adequate exposure of all defects was obtained by a subperiosteal dissection of the orbit following which, the implants were inserted with no fixation by screws or sutures. All orbital defects were completely exposed and the orbital soft tissue was reduced under direct vision. Forced duction test was performed before the start of surgery and again, before wound closure to ensure no entrapment of orbital tissue. Surgery was completed by closure of the wound in layers.

2. Early postoperative assessment was performed on the 1st post operative day for visual acuity, diplopia and range of movement.

3. On discharge, the patient was given a follow-up for removal of stitches (1 week) & reviewed on the 3rd, 6th and 12th month post-operation.

4. Visual acuity, range of movement of the affected eyeball, diplopia and enopthalmos was assessed in these follow-up appointments.

5. Eye movements were examined in all 9 directions. Clinically significant diplopia was defined as double vision in the primary position and within 30 degrees of gaze sufficient to interfere with the patient’s daily activities, and not just in the extremes of gaze.

6. Enopthalmos, due to enlargement of orbital cavity and subsequent backward and downward displacement of the globe into the bony orbit, was defined as 2 mm or more relative to the opposite site using Hertel’s Exophthalmometer, an instrument which measures the difference between the anterior corneal surface and the lateral orbital rim. The enophthalmos assessment is an excellent outcome indicator of the effectiveness of the PCL scaffold in the reconstruction of the orbital floor. As the scaffold is resorbable, it will slowly break down & disappear as new bone forms. This is the ideal situation as no foreign material will be present in the patient’s orbit after the whole of the implant is resorbed (~2 years).

7. Implant related complications eg. infection, exposure, extrusion, seromas, persistent edema or pain were also documented.

8. CT scans were carried out at the 6th and 12th month follow-up. This was an objective assessment of the effectiveness in reconstructing the fractured orbital floor. The scan allowed the measurement of the orbital volume of the affected side & its comparison to the non-affected side.

Results

There were 80 patients who were recruited initially. 63 patients completed the study. 19 were excluded for various reasons. Some had ophthalmic operations not related to the primary orbital pathology eg Laser-Assisted In Situ Keratomileusis (LASIK) for correction of visual acuity. Some had recurrent trauma to the eye in study. In our multi-ethnic population, the Chinese predominated our study, accounting for 49% of all cases. Age ranged from 19 to 64 years, with a mean of 35. The demographics of the patients in the 2 groups are presented in Table 1. Types of fractures are presented in Table 2.

<table>
<thead>
<tr>
<th>Types of fractures</th>
<th>Polycaprolactone group (n=27)</th>
<th>Titanium group (n=22)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Floor</td>
<td>23</td>
<td>20</td>
</tr>
<tr>
<td>Lateral wall</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>Medial wall</td>
<td>6</td>
<td>10</td>
</tr>
<tr>
<td>Roof</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

Table 2: Locations of fractures

PCL group: The mean age was 32.3 years in this group. There were 23 males and 4 females. Diplopia and enopthalmos were the more common post operative consequences. 8 (29.6%) patients had diplopia at 1 month. At the last follow up, diplopia persisted in 2(7.4%) of them.
There were 8 patients who developed enopthalmos during the follow up period, 2 of whom had residual enopthalmos at the end of 1 year follow up. None of them required corrective surgery. Neither was the degree of enopthalmos functionally or aesthetically disturbing to the patient. One patient had enopthalmos persisting from before the operation. His fracture involves all 4 walls of the orbit and he also sustained complete ptosis of his right eye. This patient is still on follow up with us and there may be plans for corrective surgery.

4 (14.8%) patients had limitations in eye motility at 1 month but their symptoms improved throughout the follow up period. None of them have gaze disturbances at the end of the follow up period. Complications of PCL Scaffold are shown in Figure 4. Throughout the course of follow up, the group tolerated PCL well, with no patient developing adverse reactions towards the study material eg pain, scarring, sterile sinus collections, ectropions or excessive debris production. There were no documented cases of migration, extrusion or protrusion of implant. None of the patients required a second operation for removal of implant.

Titanium group: The mean age was 38.4 years. There were 19 males and 3 females. The incidence of ocular complications is documented in Figure 5.

The incidence of residual diplopia was higher in the titanium group compared to the PCL group. 6 (28.6%) patients had residual diplopia at the end of 1 year’s follow up. There were 10 (47.6%) patients who developed enopthalmos during the follow up period.
Taking into account these favorable properties, PCL appears to be an attractive alternative to its non-resorbable counterpart titanium in bridging orbital defects.

This study was supported by a grant from the National HealthCare Group - NHG/-RPR 04024 & approved by the NHG Ethics committee DSRB D/04/169

References


